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ABSTRACT 

Anyons are particles with fractional statistics. They can exist as point par- 
ticles in a 2+1 dimensions, or as quasiparticles in quasiplanar condensed matter 
systems in the real world. Anyonic particles can be modelled by ordinary bosom 

or fermions coupled to a “statistical” Chern-Simons abelian gauge field. For 
certain values of the statistics phase, a plasma of anyons in the Chern-Simons 

description is a superconductor. Anyonic superconductivity may represent an 

idealized limit of a new type of superconductor in real systems, perhaps encom- 

passing the recently discovered high T, copper oxides. 
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1. Introduction 

“Anyon” is the name coined by Wilczek[“to denote particles or composite sys- 

tems which display fractional statistics and angular momentum. The most famil- 

iar example of such an object is a point charge bound to an infinite solenoid; inter- 

changing two such composite objects produces in the wavefunction an Aharonov- 

Bohm phase ezp(i0) given”‘by the product of the charge and the flux: 6=qG. By 

tuning the flux 0 can take on fractional values. Of course anyonic particlea ean- 

not exist in 3+1 dimensions due to the nature of the three-dimensional rotation 

group, which restricts the statistics parameter 0 to two values: 0 (bosons) and r 

(fermions). But in 2+1 dimension’s this restriction is absent, and point particle 

anyons are allowed!““” Regarded as elementary particles in a 2+1 dimensional 

world, anyons lie within the purview of particle physics, and can be studied as 

we study other exotic (i.e. nonexistent) beasts in the particle physics ‘Lzoo”. 

So far all this has the makings of a cute little topic with rather skimpy moti- 

vation. On the contrary, through a felicitous circumstance, the theory of anyons 

has important applications in condensed matter physics. In fact anyons are now 

known to exist[‘]as quasiparticles in at least one quasiplanar condensed mat- 

ter system: the semiconductor heterojunctions that exhibit the fractional quan- 

tum Hall effect!‘They may also appear in films of liquid helium-3!r’Furthermore 

Laughlin has put forth the provocative hypothesis”““” that anyons turn up in 

least one other “hot” area of condensed matter physics: high T, copper oxide 

superconductors. In Laughlin’s scenario, the Hubbard model describing the an- 

tiferromagnetic spin interactions in the copper-oxygen planes has a P and T 

violating phase with a disordered ground state and anyonic quasiparticles. These 

anyons have statistics parameter 0=~/2, half the value for fermions, and go by 

the name “semions”. They can also acquire unit charge by binding to holes. A 

bound pair of charged semions is a charge 2 boson (the interchange phase will be 

4 times n/2) analogous to B Cooper pair in BCS theory. High Z’, superconduc- 

tivity, in this picture, is anyon superconductivity coinciding with condensation 
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of these pairs. 

There are two broad but quite distinct questions that arise from Laughlin’s 

work. The first is whether, and under what conditions, a plasma of anyons is 

a superconductor. This question is best attacked by regarding anyons as point 

particles in 2+1 dimensions, and it can be formulated in the language of particle 

theory. The second broad question is whether high Tc superconductors are any- 

onic superconductors. This question”-“’ lies almost entirely within the province 

of condensed matter theory and is, thus, none of our business. I will, nevertheless, 

say a few words about the current experimental situation later in this talk. 

A variety of different approaches have been used to describe anyons. The 

direct approach simply treats a gas of point particle anyons with no interac- 

tions other than the nonlocal effects of their statistical phases. Computer sim- 

ulations”*‘can keep track of the relative windings of anyon trajectories, though 

only for rather small ensembles. Indirect theoretical approaches model anyons 

as conventional bosons or fermions carrying fictitious “statistical” charges and 

fluxes. The 2+1 dimensional Chern-Simons term[‘O’yl’ is the key to such de- 

“‘P-” scriptions. It is not obvious that all these various approaches are equiva- 

lent. Anyons are not really free in these models but rather have differing short 

range quantum dynamics. Nonperturbative effects can also vary from model to 

model. Furthermore the status of the field-theoretic Chern-Simons d\:scription 

of anyons has recently been attacked by Boyanovsky”“and by Jackiw”‘lon for- 

mal grounds. Thus, even the “idealized” description of anyons BS fundamental 

particles is fraught with messy subtleties. 

The first dynamical calculations relevant to anyon superconductivity were 

carried out by Fetter, Hanna, and Laughlin; [‘*‘these were then extended and 

expanded upon by Chen, Halperin, Wilczek, and Witten!‘O’These authors ex- 

amined a free gas of uncharged point particle anyons with statistics parameter 

S=r(l-i;), where N is an integer. They showed that, in the random phase ap- 

proximation, the current-current correlator at zero temperature has a massless 
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pole. This massless collective mode presumably signals superfluidity in the un- 

charged anyon gas and, by extension, superconductivity for the anyon plasma. 

This result, though approximate, strongly suggested that some anyon systems, 

including semions, may exhibit superconductivity. 

2. Chern-Simons theory 

One way of describing an anyon gas employs a finite-density 2+1 dimensional 

field theory of fermions minimally coupled to an abelian Chern-Simons (CS) 

gauge field. A suitable action is: 

s = J d3z pI(pl - mp + ~/Lcp”ha&z~] 

Here a,, denotes the fictitious “statistics” gauge field, and p is the Chern-Simons 

coupling. In the absence of a Maxwell term the statistics gauge field is not 

dynamical. The second class contraint 

where p is the fermion density and f?=eiiZJ;ai, implies that the Chern-Simons 

term attaches a statistical flux e/p to each fermion, which also carries statistical 

charge e. This can be seen by spatially integrating both sides of the constraint 

equation: 

e jd2zp=+i’.d~=p~ 

The statistics of the fermions acquires an anyonic contribution given by 

It is important to note that the CS coupling appearing in this equation, which 

determines the anyon statistics, is the renormalized VDCUU~ value. For either vac- 

uum or finite density Chern-Simons field theory, p is only finitely renormalized. 
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For example, using a cutoff regularization in the vacuum theory, one obtains POJII 

2 

Pren = Pbaare + fi& 

The “special” anyons of refs [29,30] correspond to the CS coupling taking values 

The case N=2 corresponds to semions. If our two-dimensional spatial manifold is 

taken to be compact, then the CS coupling may already be restricted to quantized 

values, but we do not consider this in our discussion. 

Although we excluded a Maxwell term for the statistics gauge field, one-loop 

radiative corrections will generate it. Thus in the full quantum CS theory the 

statistics gauge field id dynamical. These dynamics are strictly short range, since 

the CS term gives the statistics photon a gauge invariant (P and T violating) 

mass. 

3. Criterion for anyonic superconductivity 

We can give a simple criterion for anyonic superconductivity in the language 

of Chern-Simons field theory!s”Let’s give our fermions a real charge e in addition 

to their statistical charge e. They are then minimally coupled to the sum, a,,+A,,, 

of the statistics gauge field and the real gauge field. Integrating out the fermions 

yields a low energy effective action of the form 

.Ceff = - i(1 + lTI,)F,,F’” - &c,,~A,,a,A~ 

+ PRQwA+%aA - ~~.&f’” 

- ~II~Fpyf”” - $I+~ (A,Aaa + +%-h) 

~~~~ H,=H,(o), II,=&(O) come from the parity even and odd parts of the vat- 
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uum polarization: 

&,,(k2) = II,(k2)(k,kv - grvk2) - Wk2)+~k’ 

and to simplify the discussion we have assumed 2+1 dimensional Lorentz invari- 

ance. 

The parameter PR is the renormalized value of the finite density CS coupling. 

We can now state our criterion for anyonic superconductivity: 

PR = 0 

One can easily demonstrate that this is at least a suficient condition for any- 

or& superconductivity. One considers the path integral for the effective theory, 

changing variables from a,, to the dual field ffi, ffi=~c,,Y~fpv. This is accom- 

panied by imposing the Bianchi identity on ffi via a Lagrange multiplier scalar 

field 4. If and only if ~R=O, one can then perform the Gaussian path integral 

over ff‘ and obtain an equivalent local effective action: 

‘eff(4,4) =;(a,#~ + CA,)’ + c~(a,,~ + CA,)p 

~FIJ-F”~ - $L~~~~A,~,A~ 

where I have resealed 4 and introduced new parameters a and C. 

The first term on the right hand side of the above expression is the conven- 

tional Higgs mechanism; it gives the Meissner effect and the London supercur- 

rent. Of course, just as in refs [29,30], a massless collective mode is the signal of 

superconductivity. In the present description this mode is just the statistics pho- 

ton, which has become dynamical via an induced Maxwell term and has become 

massless due to our dynamical assumption n~=0. 

Note that in anyonic superconductivity the real photon acquires mass in 

two ways: from the Higgs mechanism and from its induced CS term. Indeed 
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if we truely lived in a 2+1 dimensional world all we would need to obtain a 

Meissner effect is a CS term for the real photon, which would generally be induced 

by any P and T violation that happens to be hanging around. Such “Chern- 

Simons superconductivity” probably has no relation to real systems, but it is an 
P1.34, interesting topic nonetheless. 

4. Integer quantum Hall picture 

In refs. 129,301 a massless collective mode was exhibited in a mean field 

approximation to the anyon gas, where the statistics flux is smeared out to a 

constant mean value. In the language of CS perturbation theory, this is equivalent 

to summing the finite-density tadpole corrections to the fermion propagator!)““’ 

One can define a new “tadpole-improved” perturbation expansion using this 

tadpole-corrected propagator, which is equivalent to fermion propagation in a 

background mean field, f3, which is fixed by the mean fermion density: 

The mean fermion density can be determined in this same approximation as a 

function of the chemical potential, pc. Solving the relevant Schwinger-Dyson 

equation gives ,%W 

where I have taken ,%>m>O. 

If we forget for the moment that B is not an independent variable, this 

expression simply exhibits the p vs. nc behavior of fermions in Landau levels. 

Each Landau level has degeneracy eBf27r per unit area. The levels are evenly 

spaced; the spacing is the Landau gap A=&?/,. If we define 

N =I& (“2;Bm2) 

then the condition to have N ezactly filled Landau levels is that (&m2/2eB) 
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be equal to N plus a nonzero remainder. 

Our criterion for superconductivity, nren=O, can be rewritten as 

II,(k = 0) = p 

We can easily compute II,,(O) in the mean field approximation, since cutting 

tadpoles that appear in diagrams for p gives diagrams for II,. Thus[““” 

a(o) = %Ipa 

Using our expression for p and the relation between p and 13, one sees immediately 

that the criterion for anyonic superconductivity is precisely satisfied in the case 

where we have N exactly filled Landau levels. Furthermore this requires that 

the vacuum renormalieed CS coupling taking values Ne2/2w!l”S”S”381 Thus the 

“special values” of the anyon statistics parameter correspond to exactly fdled 

Landau levels. 

Now exactly filled Landau levels for planar fermions in a constant perpen- 

dicular background magnetic field sounds like the integer quantum Hall (IQH) 

system!‘Of course in our case the magnetic field is a fictitious statistics field. 

Nevertheless this similarity is surprising, since IQH systems are certainly not su- 

perfluids! In particular, they don’t exhibit the linear dispersion at low momenta 

signalling the presence of a massless collective mode. The crucial difference be- 

tween the mean field anyon gas and the IQH system is that B is fixed in relation 

to p. A local density perturbation in the IQH system requires exciting fermions 

across the Landau gap to an unoccupied level. In our system, however, a local 

increase in density brings a local increase in B, resulting in increased level de- 

generacy that is just enough to allow a density wave without exciting fermions 

across the gap!“‘This is the origin of the masaless collective mode in the mean 

field anyon gas. 



5. Nonrenormalization theorem 

Above I have sketched a rather simple and physically intuitive picture of 

anyon superconductivity in a mean field approximation. However, except for N 

very large, mean field would not appear to be a good description of the actual 

anyon gas. In CS language, the above analysis completely neglects sll2-loop and 

higher radiative corrections which are not pure tadpole. 

Never fear, Chern-Simons theory comes to our rescue with a powerful non- 

renormalization theorem!31”*’ This theorem states that all radiative corrections 

to p and II,(O), higher than l-loop, vanish order by order in tadpole-improved 

perturbation theory. Thus the CS mean field picture diseuaaed above ia exact. 

We can therefore say with confidence that anyonic superconductivity does exist 

as a property of finite-density (zero temperature) Chern-Simons theory. 

It is amusing to note that the physics of the nonrenormalization theorem is 

equivalent to the we&known insensitivity of the IQH quantisation to impuri- 

tie?” Thus condensed matter experiment “confirms” the formal properties of 

a 2+I dimensional gauge theory! 

6. Conclusion 

As we have seen, anyonic superconductivity differs from ordinary (London) 

superconductivity by the addition of P and T violating effects. This suggests a 

number of possible experimental signatures for anyonic superconductivity. 

These include “orbital ferromagnetism” and optical rotation effects. The exper- 

imental evidence for orbital ferromagnetism is distinctly negative, [““” while the 

situation for optical rotation is more promising. In any case the experimental 

status of P and T violation in high Z’, materials should be clarified fairly soon. 

I must point out that the theoretical predictions themselves have several murky 

points; these need to be clarified before a serious confrontation with experiment 

is attempted. 



Since anyonic superconductivity exists as a theoretical possibility, I would be 

surprised if it is not realized in some condensed matter system. Thus, even if it 

turns out that the copper-oxide superconductors are not anyonic, there may be 

other superconducting anyon systems yet to be discovered. 
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